【www.56.net】根据锂金属电池充放电过程中锂元素在空间分布的密度,原因之一是学界对金属锂在碳晶格上电沉积成核

 www.56.net     |      2019-12-23 19:40

近日,现代工程与应用科学学院朱嘉教授课题组在基于等离激元效应的原位探测金属锂沉积方面取得重要进展,相关成果以《In operando plasmonic monitoring of electrochemical evolution of lithium metal》为题2018年10月15日发表在PNAS (doi/10.1073/pnas.1808600115)。

材料学院李正操教授课题组利用中子深度分析实现锂金属电极微观行为的原位监测


清华新闻网8月2日电 近日,材料学院李正操教授课题组与合作者在《自然·通讯》发表题为“原位监测锂金属电极循环过程中的锂空间分布”的研究论文。该研究利用核技术手段,将原位中子深度分析与同位素方法结合,定量地解析了锂金属电池沉积/溶解过程的锂元素在空间分布的不均匀性,对安全高性能锂金属电极的开发和应用具有重要的指导意义。

www.56.net 1

图1. a. NDP探测锂金属溶解/沉积原理示意图;b. NDP原位测量锂金属溶解/沉积4个循环周期的相对锂密度与深度关系图。

金属锂负极具有很高的理论容量、极低的密度和最负的电势,一直以来都被视为电池负极的理想材料。近年来,人们还提出了以锂金属为负极的多种新型电池体系,包括锂-硫电池、锂-空气电池等。这些新型电池体系的理论比容量远高于现有商业化锂离子电池体系,是最有希望的下一代高密度储能系统。然而,其循环过程中的锂枝晶生长问题严重阻碍了锂金属负极的发展:在锂金属电池循环过程中,电极表面的局部极化使锂离子不均匀沉积,生长成为锂枝晶,锂枝晶生长到一定程度后会断裂成为“死锂”,造成电池循环效率的降低;若锂枝晶不断生长,有可能刺穿隔膜,造成正负极短路,导致热失控引发的安全事故;此外,金属锂反应活性很高,极易与电解液发生反应生成非活性固态电解质界面膜,SEI反复破裂和生长导致容量衰减。因此,如何有效抑制锂枝晶生长是实现锂金属负极安全高效应用的关键。

研究金属锂沉积/溶解过程是抑制枝晶生长的第一步;而由于电解质和集电极的存在使得金属锂沉积/溶解过程微观行为的原位监测非常困难。通过引入锂同位素6Li与NDP表征相结合,该研究实现了锂金属电池充放电过程的原位监测;深入探讨了锂金属负极锂离子的沉积/溶解行为、枝晶成核和生长机理。根据锂金属电池充放电过程中锂元素在空间分布的密度,定量地解析出电流密度、电解质浓度和循环历史等因素对锂元素不均匀分布的影响;对比库伦效率,监测得到非活性固态电解质界面膜膜及“死锂”中锂元素分布。同时,该研究在铜集流体中观测到部分不可逆微克级的锂脱嵌现象,并结合原位XRD分析和基于第一性原理的分子动力学模拟证实铜晶界在其中占据主导作用。

www.56.net 2

图2. 不同循环历史对Li总量的演变影响:a.原位NDP测量;b. 不同循环下监测得到的Li总量;c. 对应的库仑效率和锂沉积效率比较。

李正操教授课题组多年来致力于核能材料与系统安全的研究。材料学院2016级博士生吕沙沙为该论文的第一作者,李正操教授和荷兰代尔夫特理工大学马尼克斯·伟芝梅克副教授为该论文的共同通讯作者。该研究得到了国家自然科学基金、中荷科技合作项目等的资助。

论文链接:

必赢,供稿:材料学院 编辑:襄楠

www.56.net,为开发高能量密度的纳米固态金属锂电池,解决金属锂电池面临的循环性与安全性难题,在科技部、国家自然科学基金委和中国科学院的大力支持下,中科院化学研究所分子纳米结构与纳米技术院重点实验室研究员郭玉国课题组在金属锂负极、固体电解质及固态电池研究方面取得系列进展。

“截停”锂枝晶 单层石墨烯电极可避免锂电池短路

随着电子便携设备及电动汽车的迅速发展,研究并开发高能量密度的锂电池材料尤为关键。金属锂的理论容量可达商用石墨负极的10倍,从而有望成为下一代储能器件的负极材料。然而在循环过程中,锂离子的沉积非常不均匀,会形成金属锂枝晶,造成电池的短路和大量的副反应,从而导致循环寿命变短,易引发火灾爆炸等安全问题,阻碍了其商业化生产应用。因此,为了解决锂枝晶的问题,有效并且准确地观测金属锂的沉积过程进而改善电池的性能,显得尤为关键。但是由于金属锂化学性质非常活泼,常规的表征方法很难在纳米尺度实时探究电池中金属锂负极的沉积过程以及形貌演变。

近年来,该课题组研究人员长期致力于金属锂负极的相关研究。前期的研究工作中,针对充放电过程中金属锂负极的不均匀溶解和沉积问题,他们提出利用三维纳米集流体来引导金属锂在三维电极内部的均匀沉积与溶解的思路,成功实现了金属锂枝晶的控制(Nat. Commun., 2015, 6, 8058)。研究人员提出并开发了一种原位处理技术,成功在金属锂表面形成具有高杨氏模量、快速锂离子输运能力的磷酸锂固体电解质界面膜,有效减少了金属锂与电解液的副反应,抑制了锂枝晶的生长(Adv. Mater., 2016, 28, 1853)。

科技日报北京7月15日电 记者15日获悉,军事科学院、北京大学等单位联合研究团队合成了一种完美的单层石墨烯电极,并揭示锂原子以其为基底材料进行电沉积的行为,填补了金属锂在碳原子晶格上异相成核的基础研究空白,为破解锂电池产业化遭遇的锂枝晶等难题提供理论基础。相关论文近日在线发表在《储能材料》(Energy storage materials)杂志上。

朱嘉教授课题组发展了基于等离激元效应的金属锂原位观测技术。通过电池设计,利用选择性电化学沉积,通过理论计算与原位实验建立金属锂沉积形貌与反射光谱之间的直接关联性:在有序金属锂颗粒生长的情况下,由于尺寸依赖的局域等离激元共振与wood异常的耦合,反射光谱呈现明显的反射谷;相反,无序锂枝晶由于光散射和耦合,具有宽谱的光学吸收特性,致使反射曲线在可见近红外波段范围内整体平滑并且反射率低于10%。基于等离激元的原位探测平台,一方面可以无损的,快速的探测各种情况下(包括不同的电流密度,温度等)金属锂的沉积过程,判断不同电解液的枝晶抑制效果;另一方面,也能作为电池实际运行过程中锂枝晶的预警方式,从而提高电池的安全性能。

为进一步解决金属锂负极利用率低的问题,研究人员结合石墨碳材料的结构优势,提出一种高效稳定的“锂储藏室”的概念,在三维导电骨架上生长类洋葱状、石墨化的球形碳颗粒,实现了金属锂/电解质界面的均匀调控,有效控制碳球表面金属锂枝晶的生长并大幅提高锂的利用率,在负极容量仅过量5%的条件下,电池仍能长期稳定循环,该研究结果近期发表在J. Am. Chem. Soc. (2017, 139, 5916)上。

“锂枝晶”会在液体锂电池中生长,刺穿隔膜,造成电池短路。研究团队成员军事科学院副研究员张浩介绍,近年的研究以多孔碳基材料构筑金属锂负极骨架的方法抑制锂枝晶生长,但是规律紊乱、效果有限。原因之一是学界对金属锂在碳晶格上电沉积成核的基础研究的空白。

www.56.net 3

为解决高面容量金属锂负极中枝晶生长以及循环稳定性差的问题,研究人员采用具有电化学活性的石墨化碳纤维作为多功能三维集流体,得到面容量高达8 mA h cm-2且无枝晶的金属锂负极。由于石墨化碳纤维能降低局部电流密度并缓解体积变化,该负极在循环过程中表现出高库仑效率、低电压极化和长循环寿命,相关成果近期发表在Adv. Mater. (2017, 29, 1700389)上。

要明确金属锂如何在碳晶格沉积,必须获得纯粹、无背景干扰的生长环境。为此,团队中的北京大学彭海琳教授课题组合成了一个完美的碳原子基面,利用化学气相沉积法在铜箔上生长出了单层石墨烯。论文第一作者、团队成员孟倩倩介绍,单层石墨烯可以用来排除多孔碳带来的一切耦合因素对锂沉积的干扰,进而实现对金属锂在碳晶格上的异相成核行为的清晰解读。

上一篇:没有了 下一篇:没有了